Training-induced cortical representation of a hemianopic hemifield

L Henriksson, A Raninen, R Näsänen, L Hyvärinen and S Vanni

J. Neurol. Neurosurg. Psychiatry 2007;78:74-81; originally published online 15 Sep 2006;
doi:10.1136/jnnp.2006.099374

Updated information and services can be found at:
http://jnnp.bmj.com/cgi/content/full/78/1/74

These include:

Data supplement
"web only supplements"
http://jnnp.bmj.com/cgi/content/full/jnnp.2006.099374/DC1

References
This article cites 29 articles, 11 of which can be accessed free at:
http://jnnp.bmj.com/cgi/content/full/78/1/74#BIBL

Rapid responses
You can respond to this article at:
http://jnnp.bmj.com/cgi/eletter-submit/78/1/74

Email alerting service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article

Notes

To order reprints of this article go to:
http://www.bmjjournals.com/cgi/reprintform

To subscribe to Journal of Neurology, Neurosurgery, and Psychiatry go to:
http://www.bmjjournals.com/subscriptions/
Training-induced cortical representation of a hemianopic hemifield

L Henriksson, A Raninen, R Näätänen, L Hyvärinen, S Vanni

Background: Patients with homonymous hemianopia often have some residual sensitivity for visual stimuli in their blind hemifield. Previous imaging studies suggest an important role for extrastriate cortical areas in such residual vision, but results of training to improve vision in patients with hemianopia are conflicting.

Objective: To show that intensive training with flicker stimulation in the chronic stage of stroke can reorganise visual cortices of an adult patient.

Methods: A 61-year-old patient with homonymous hemianopia was trained with flicker stimulation, starting 22 months after stroke. Changes in functioning during training were documented with magnetoencephalography, and the cortical organisation after training was examined with functional magnetic resonance imaging (fMRI).

Results: Both imaging methods showed that, after training, visual information from both hemifields was processed mainly in the intact hemisphere. The fMRI mapping results showed the representations of both the blind and the normal hemifield in the same set of cortical areas in the intact hemisphere, more specifically in the visual motion-sensitive area V5, in a region around the superior temporal sulcus and in retinotopic visual areas V1 (primary visual cortex), V2, V3 and V3a.

Conclusions: Intensive training of a blind hemifield can induce cortical reorganisation in an adult patient, and this case shows an ipsilateral representation of the trained visual hemifield in several cortical areas, including the primary visual cortex.
Stimuli

The stimulus in MEG consisted of two 10°-wide and 35°-high checkerboard patterns on both sides of the fixation, starting at 15° eccentricity. MEG responses were measured for contrast reversals of checkerboards on either side of the fixation. Interstimulus interval was 0.9–1.1 s between the contrast reversals, randomised between the hemifields. The total interstimulus interval within a hemifield varied from 0.9 to 10.0 s. The only difference in the checkerboard stimulus in fMRI was that hemifields had to be stimulated in different runs because the narrow magnet bore and head coil limited the horizontal visual field to about 26° in diameter. The fMRI series comprised four 6-min runs/hemifield. Phase-encoded retinotopic mapping with rotating wedge-shaped stimulus disclosed cortical representation of the meridional positions (polar angle) in the normal hemifield to 25° eccentricity. The checkerboard pattern reversed in the left or right hemifield in random order. The MEG helmet is viewed from the back, with an arrow. The checkerboard pattern reversed in the left or right hemifield over the right hemisphere, emerging over the left hemisphere; R, right hemisphere; L, left hemisphere.

MEG field patterns during stimulation of the blind (right) hemifield. Stimulation evoked no measurable MEG response before the onset of the training. Before training, stimulation of the blind hemifield evoked no measurable responses. The responses appeared over the right hemisphere and increased to reach the same amplitude as responses after stimulation of the normal hemifield. After training, the evoked fields were robust field patterns for the stimulation of the blind hemifield. In the last two years of training, there were clear indications of more pronounced activation of the blind (right) hemifield over the right hemisphere, emerging over the medial occipital regions and then moving to more temporal regions (fig 1A). Figure 1B shows the MEG field patterns after stimulation of the normal hemifield. These evoked fields were clearly affected during the training of the blind hemifield.

As ipsilateral visual processing is exceptional, we examined the reactivity of spontaneous oscillations for further support. Typically, spontaneous oscillations close to sensory cortices attenuate transiently after sensory stimulation. Figure 2 shows time–frequency representations of oscillatory activity time locked to stimulation of the blind hemifield, averaged over a set of channels over the occipital lobes. Before training, left-side channels showed strong oscillations in the frequency range of 8–13 Hz with minor reactivity to stimulation (fig 2A), whereas the
channels over the right occipital lobe showed the strongest oscillations in the frequency range of 13–17 Hz without any reactivity (fig 2B). After 2 years of training, the oscillations showed almost no suppression on the left side (fig 2C), but oscillatory activity on the right side was clearly suppressed at 150 ms after stimulus presentation (fig 2D, arrow). Strong oscillations may hide minor reactivity on the left, but obviously, training has mainly affected the behaviour of the intact (right) hemisphere. While the right occipital lobe has gained reactivity for stimulation of the blind (right) hemifield, the strong non-reactive oscillations on the left suggested functional disconnection of the left occipital cortex from visual input.

To identify major source regions and their dynamics, MCE analysis was applied to the MEG data acquired after training. Figure 3A shows the mean estimated brain activity between 100 and 200 ms after stimulations of the blind and normal hemifields. The MCEs show single maxima, which can be explained with active brain areas shown with ellipsoids over the magnetic resonance image. The activity is presumably emerging from several visual areas. The mean location of the source after stimulation of the blind hemifield is in the same hemisphere but located more posteriorly than the source activated by stimulation of the normal hemifield. Time courses of the selected regions of interest show how the response after stimulation of the blind hemifield peaks later than the steep response after stimulation of the normal hemifield. Figure 3B shows MCEs between 275 and 320 ms after stimulation of the blind hemifield and between 160 and 180 ms after stimulation of the normal hemifield. The lateral activities can be localised close to the visual motion-sensitive area V5. Compared with the normal hemifield, the V5 activation is delayed after stimulation of the blind hemifield stimulation.
In fMRI, we first localised the visual motion-sensitive area V5 with a low-contrast circularly symmetrical moving stimulus, and found a strong asymmetry between the hemispheres (fig 4A). In the intact hemisphere, V5 and a more dorsal and anterior satellite area around the superior temporal sulcus were strongly activated, whereas in the lesioned hemisphere only a marginal response was visible around a typical V5 location (arrow). To explore the functional reorganisation after training, the pattern-reversal checkerboard stimulus evoking clear signals in MEG (fig 1) was transferred to fMRI. Figure 4B shows activations for both the stimulation of the normal and blind hemifields. Consistent with the MEG field patterns,
during stimulation of either of the hemifields, fMRI activations were in the posterior right hemisphere, including medial and lateral occipital and superior temporal regions. The lateral activation cluster overlaps the location of the response to visual motion, showing that the motion-sensitive area V5 and the region around the superior temporal sulcus were sensitive to both low-contrast motion and pattern reversal.

To examine more closely the visual field representation in the retinotopic visual areas, the fMRI responses for the checkerboard stimulations were assigned to IT’s segmented and reconstructed cortical surface of the intact occipital lobe (fig 5). The borders between retinotopic areas were mapped with phase-encoded retinotopic mapping. (B) Stimulated region in the blind (right) hemifield is represented in the same visual areas with the normal hemifield in the intact (right) occipital cortex, extending mainly to the visual areas dorsal of the calcarine sulcus.

DISCUSSION

Training induced functional reorganisation in the intact hemisphere in visual areas V1, V2, V3, V3a and V5, and in the putative human superior temporal polysensory area around the superior temporal sulcus. The representation of the blind hemifield is distributed to the same functionally defined cortical areas with the normal hemifield representation. In accordance with this reorganisation, the fields evoked by stimulation of the normal hemifield appear to have shifted during the training (fig 1). Our results, showing the strongest responsiveness to the stimulation of the blind hemifield in V5, V3a and the superior temporal polysensory area, are in line with studies on macaque monkeys with inactivated primary visual cortex, but extend the previous findings by indicating strong involvement of low-level retinotopic areas. The reorganisation of low-level retinotopic areas could be due to the combination of long rehabilitation, repeated difficult tasks in the training and ipsilateral processing—that is, processing in a healthy part of the brain, where these retinotopic areas are available. Ipsilateral processing of residual vision, including areas V3a/V5, has been shown in patients who have undergone hemispherectomy. In healthy people, much more limited ipsilateral responses are found. The probable explanation for why training enhanced ipsilateral instead of contralateral processing of residual vision is the possible partial functional disconnection of the left occipital regions from the visual processing, as suggested by the strong poorly reacting oscillations (fig 2).

Unsteady fixation has been suspected to be the main cause of enlargement of the visual field. If a patient is looking, perhaps unconsciously, toward the stimulus in the blind hemifield instead of fixating steadily at the fixation cross, stimulation of the blind hemifield could be seen by the normal hemifield. Here we list five major proofs against fixation inaccuracies in our data.
Consistent results in follow-up imaging data and successful training are found independently in MEG and psychophysical experiments, where several different control measures for eye position were used.

Our patient was experienced. In the few fMRI sessions where fixation was unstable, activation in the retinotopic areas was strongly attenuated (two sessions before video control, data not shown). Experienced subjects, on average, move their eyes only about 10 arcmin,27 and patients with homonymous hemianopia keep their fixation comparable before and after training of visual functions.28

In some experiments, the eye position was followed online on a video display, and fixation instabilities exceeding the proximal edge of the peripheral stimulus would have been detected.

In Fig 5, the activations in response to stimulations of the right and left hemifield were at approximately the same distance from the foveal confluence. If activation during stimulation of the blind hemifield was derived from eccentric fixation, the patient should have fixated far outside the display on the right, instead of fixation cross on the left.

Figure 6 Fixation control measurement with a 31-region multifocal magnetic resonance image (fMRI). (A) An example of a multifocal stimulus frame. The patient fixates on a point in the middle of the display. (B) Response to multifocal stimulation of the blind (right) hemifield assigned to the cortical surface of the patient’s intact (right) occipital cortex. The black lines indicate the borders between retinotopic areas. (C) Responses to multifocal stimulation of the normal (left) hemifield shown on his structural magnetic resonance image (activations thresholded at $p_{FWE}=0.05$, R; right sagittal slice) and assigned to the cortical surface of the intact occipital cortex (thresholded at $T>10$). Colours of the activated clusters code the eccentricity of the visual field. In the unfolded view, the white outline indicates the location of the response to multifocal stimulation of the blind hemifield. (D) Same data as in (C), but colours code the polar angle of the normal hemifield, enabling the comparison between retinotopic organisations mapped with the multifocal method and borders between retinotopic areas mapped with the phase-encoded approach.
IT’s ability to fixate was controlled with multifocal fMRI, where regions in the visual field are stimulated in parallel.

If the subject cannot keep fixation, retinotopy breaks down (no signals emerge); and if the subject has stable eccentric fixation, retinotopy shows unusual organisation of the responses. Figure 6 shows the retinotopic map of responses during multifocal stimulation of the normal (left) hemisphere. The activation is strongest in the primary visual cortex and extends to neighbouring retinotopic areas, which is a typical distribution of responses expected for a normal visual field in a multifocal fMRI experiment. If IT had had stable eccentric fixation on the right side of the fixation point, the activation coded in colour in fig 6C should be more distant from the foveal confluence than the activation shown by white lines, and the activation patterns coded in red and purple in fig 6D should be inside V1 and not at the border between visual areas V1 and V2, where the vertical meridian is represented (more details are available online at http://jnnpbmjournals.com/supplemental).

Owing to parallel stimulation of the hemifields, findings from the multifocal data can only be explained by activation of retinotopic areas of the intact hemisphere by stimuli in either hemifield. During training, IT became conscious of his right hemifield, patches of form vision emerged, and the far periphery of the blind hemifield brightened. Restored function and the coinciding right hemisphere activation are due to therapeutic intervention, and not to spontaneous recovery. Spontaneous recovery occurs typically within the first 3 months after unilateral visual field loss, although single cases have continued improving without treatment for up to 2 years. In our patient, training was performed in the third and fourth year after the stroke. Before, IT showed a stable homonymous hemianopia, with no evoked neuralmagnetic responses in response to the stimulation of his blind hemifield. At such a chronic stage after brain injury, the probability of any further spontaneous recovery is negligible, and restoration of function must result from intervention.

Callosal connections have been proposed to mediate ipsilateral extrastriate activations documented with healthy subjects, but the extent of ipsilateral processing differs between IT and healthy people. As only minor activation was detected in IT’s left hemisphere (fig 4), callosal connections seem to be an and healthy people. As only minor activation was detected in IT’s left hemisphere (fig 4), callosal connections seem to be an unusual organisation of the responses. Figure 6 shows the retinotopic map of responses during multifocal stimulation of the normal (left) hemisphere. The activation is strongest in the primary visual cortex and extends to neighbouring retinotopic areas, which is a typical distribution of responses expected for a normal visual field in a multifocal fMRI experiment. If IT had had stable eccentric fixation on the right side of the fixation point, the activation coded in colour in fig 6C should be more distant from the foveal confluence than the activation shown by white lines, and the activation patterns coded in red and purple in fig 6D should be inside V1 and not at the border between visual areas V1 and V2, where the vertical meridian is represented (more details are available online at http://jnnpbmjournals.com/supplemental).

Owing to parallel stimulation of the hemifields, findings from the multifocal data can only be explained by activation of retinotopic areas of the intact hemisphere by stimuli in either hemifield.

During training, IT became conscious of his right hemifield, patches of form vision emerged, and the far periphery of the blind hemifield brightened. Restored function and the coinciding right hemisphere activation are due to therapeutic intervention, and not to spontaneous recovery. Spontaneous recovery occurs typically within the first 3 months after unilateral visual field loss, although single cases have continued improving without treatment for up to 2 years. In our patient, training was performed in the third and fourth year after the stroke. Before, IT showed a stable homonymous hemianopia, with no evoked neuralmagnetic responses in response to the stimulation of his blind hemifield. At such a chronic stage after brain injury, the probability of any further spontaneous recovery is negligible, and restoration of function must result from intervention.

Callosal connections have been proposed to mediate ipsilateral extrastriate activations documented with healthy subjects, but the extent of ipsilateral processing differs between IT and healthy people. As only minor activation was detected in IT’s left hemisphere (fig 4), callosal connections seem to be an improbable explanation.

A subcortical pathway including strengthened interhemispheric commissural connections of the superior colliculus, distributing left hemisphere activity to the right extrastriate visual areas via the pulvinar, is a more plausible explanation. The routing from the right hemifield to the right occipital lobe remains unclear, but the dynamics of the processing (fig 3) suggest that stimulation of the affected hemifield would activate the lower-tier areas directly and not through an extrastriate area such as V5.

ACKNOWLEDGEMENTS

We thank J M Hupe and V Vissu for insightful comments on the manuscript, M Kattelus for help with the fMRI measurements, and A Tarkkäinen and S Taulu for technical support. The Brain à la Carte toolbox was provided by unite mixte INSERM/Université Joseph Fourier 594, Grenoble, France.

REFERENCES

21 Gross CG. Contribution of striate cortex and the superior colliculus to visual function in area MT, the superior temporal polysensory area and the inferior temporal cortex. Neuropsychologia 1991;29:497–515.
A 52-year-old man presented with facial swelling owing to progression of arteriovenous malformation (AVM). Angiography under endotracheal anaesthesia showed the right internal maxillary, right ascending pharyngeal and right superficial temporal arteries feeding an AVM (fig 1A). Clear connections to the intracranial circulation were not found. Vessels were embolised using N-butyl-2-cyanoacrylate and iodinated oily x ray contrast medium comprising 40% iodine in poppy seed oil (Lipiodol; Terumo, Tokyo, Japan; fig 1B).

After AVM embolisation, disturbance of consciousness and left hemiparesis were present. Diffusion-weighted magnetic resonance imaging showed multiple hyperintense lesions of the right middle cerebral artery, right posterior cerebral artery and right posterior inferior cerebellar artery territories (fig 2A). Computed tomography showed low-density lesions with high-density spots (fig 2B). We confirmed a patent foramen ovale (PFO) using transcranial Doppler and transoesophageal echocardiography with saline contrast. No lesions contributing to cerebral embolism were present in the carotid artery or the aortic arch. We finally considered that paradoxical brain embolism occurred because of embolic material passing through the PFO.

Cerebral complications during catheter embolisation have rarely been described in detail.1,2 Firstly, embolic material would have had to pass from the artery to the vein through the cerebral AVM during catheter embolisation. Pulmonary embolism as a complication of transcatheter arterial embolisation has indeed been documented.3 Secondly, mechanical ventilation may have contributed to an elevation of right atrial pressure. Increasing pressure in the right atrium would generate conditions such as a Valsalva manoeuvre. Therefore, embolic material could have passed from the right to the left atrium through the PFO, resulting in multiple brain infarctions.

A case of brain embolism during catheter embolisation of head arteriovenous malformation.

What is the mechanism of stroke?

References

www.jnnp.com