Examination of the effects of working memory training on working memory capacity and transfer to fluid intelligence

TIA ANDERS, BRITTNEY GETZ, CHELSEA NILL, & JESSIE SAHMS
ADVISOR: DR. BOPP

Working Memory Training
- Working Memory
- WM training: improve working memory capacity (WMC)
- Klingberg: application to ADHD
- Neurological changes

Fluid Intelligence & WM
- Correlation between performance on WM tasks and fluid intelligence tests
- Fluid intelligence task: Raven’s progressive matrices

Jaeggi, Buschkuehl, Jonides, Perrig (2008)
- WM training: N-back task for 8, 12, 17, or 19 sessions
- WMC transfer to improved fluid intelligence on BOMAT

Research Questions
- Can working memory capacity (WMC) be improved with training?
- How long will training effects last?
- If WMC is improved, will it transfer to improvement on tests of fluid intelligence?

Methodology
Training (N=15)
- Day 1: Pretest
- Day 2-11: 10 days training
- Day 12: Post-test1
- Day 26: Post-test2

Control (N=15)
- Day 1: Pretest
- Day 2-11: nothing
- Day 12: Post-test1
- Day 26: Post-test2

Pre-test: Baseline WM task; Digit Span; Raven’s progressive matrices
Training: WM training task
Post-test1: Baseline WM task; Digit Span; Raven’s progressive matrices
Post-test2: Baseline WM task; Digit Span; Raven’s progressive matrices
Repetition-Detection Baseline Task

- Task: “Find the repeat” in series of 12 stimuli
 - Press spacebar to see each stimulus
 - “Click” answer at end of trial
- Difficulty varied across trials:
 - Lag = distance between repeated stimuli
 - Random order of Lags 1 - 7
- 140 trials with feedback on performance
 - Participants given 5 breaks
- Measured accuracy and processing time
 - Only accuracy examined in analyses

WM training: Lag programs

<table>
<thead>
<tr>
<th>Lag program</th>
<th>Stimuli</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lag = 2</td>
<td>2, 5, 6, 14, 12, 9, 3, 12, 1, 8, 11, 16</td>
</tr>
<tr>
<td>Lag = 3</td>
<td>2, 5, 6, 12, 14, 9, 3, 12, 1, 8, 11, 16</td>
</tr>
<tr>
<td>Lag = 4</td>
<td>2, 5, 12, 6, 14, 9, 3, 12, 1, 8, 11, 16</td>
</tr>
<tr>
<td>Lag = 5</td>
<td>2, 12, 5, 6, 14, 9, 3, 12, 1, 8, 11, 16</td>
</tr>
<tr>
<td>Lag = 6</td>
<td>2, 12, 5, 6, 14, 9, 3, 1, 12, 8, 11, 16</td>
</tr>
<tr>
<td>Lag = 7</td>
<td>2, 12, 5, 6, 14, 9, 3, 1, 8, 12, 11, 16</td>
</tr>
</tbody>
</table>

Start program: based on baseline performance
Criteria to advance: 88% overall accuracy

Research Questions

- Can working memory capacity (WMC) be improved with training?
 - Examine changes in baseline task performance from pre-test to post-test1
- How long will training effects last?
 - Examine changes in baseline task performance from post-test1 to post-test2
- If WMC is improved, will it transfer to improvement on tests of fluid intelligence?
 - Examine changes in Raven’s test performance from pre-test to post-test1 to post-test2

Performance on repetition-detection baseline task

Performance on Raven’s progressive matrices
Summary of Results

- Training group’s WMC (baseline task performance) improved from pre-test to 1st post-test.
- Training group’s improvement maintained from 1st to 2nd post-test (2 weeks).
- Control group’s performance was unchanged from across all sessions.
- Improvement of WMC did not transfer to improvement on Raven’s Progressive Matrices.

Importance of Research & Future Directions

- WMC is related to fluid intelligence, however, no transfer effect was found – why?
- Effect may be task-specific.
 - Use of simplistic versus complex WM task for training.
- Future studies:
 - Use different WM tasks.
 - Use different fluid intelligence task.
 - Examine other populations: older adults.

Implications of WM Training

- Potential to improve quality of life for individuals with Alzheimer’s disease.
- WM Training: use in nursing homes.

We would like to thank our Advisor, Dr. Bopp and our participants!